THE SHAPE OF WATER

From Jason King’s Landscape+Urbanism site

 

sketch_2-e1528755612550-2000x974

“Rendering of Houston wetland channel showing ecological wetland, conservation areas, and recreation trails” p. 90-91

An amazing resource posted on ASLA’s The Dirt (here) focuses on Design Guidelines for Urban Wetlands, specifically what shapes are optimal for performance. Using simulations and physical testing to investigate hydraulic performance the team from the Norman B. Leventhal Center for Advanced Urbanism (LCAU) at MIT. Led by Heidi Nepf, Alan Berger and Celina Balderas Guzman along with a team including Tyler Swingle, Waishan Qiu, Manoel Xavier, Samantha Cohen, and Jonah Susskind, the project aims to have a practice application in design guidance informed by research. From their site:js_plan_typical-01

“Although constructed wetlands and detention basins have been built for stormwater management for a long time, their design has been largely driven by hydrologic performance. Bringing together fluid dynamics, landscape architecture, and urban planning, this research project explored how these natural treatment systems can be designed as multi-functional urban infrastructure to manage flooding, improve water quality, enhance biodiversity, and create amenities in cities.”
Starting in the beginning by outlining ‘The Stormwater Imperative’, the above goal is explained in more depth, and issues with how we’ve tackled these problems are also discussed, such as civil-focused problem solving or lack of scalability, but also explore the potential for how, through intentional design, these systems “can create novel urban ecosystems that offer recreation, aesthetic, and ecological benefits.” (1)

single_island

The evolution that has resulted in destruction of wetlands through urbanization, coupled with deficient infrastructure leads to issues like flooding, water pollution due to the loss of the natural holding and filtering capacity of these systems and the increased flows. However, as pointed out by the authors, this can be an opportunity, as constructed wetlands “can partially restore some lost ecosystem services, especially in locations where wetlands do not currently exist.” (5)

The modeled flow patterns are also interesting, showing the differentiation from fast, regular, slow flows, along with any Eddy’s that were shown in dye testing using the flumes.

Read More

Check it out and see what you think.  The report is available as a online version via ISSUU or via PDF download from the LCAU site, where there are also some additional resources.  All images in this post are from these reports and should be credited to the LCAU team.

sketch_1

Biomimicry Tools to Inspire Designers

While many are sceptical of the idea that we can use the complexity of natural systems to design man-made systems , here is evidence that the process can in fact provide valuable design inspirations and alternative strategies . From the Dirt by Jared Green

 

Rainforest epiphyte leaf formation / Reforestation.me

“Biomimicry is about learning from nature to inspire design solutions for human problems,” said Gretchen Hooker with the Biomimicry Institute at SXSW Eco in Austin, Texas. To enable the spread of these exciting solutions, Hooker, along with Cas Smith, Terrapin Bright Green, and Marjan Eggermont, Zygote Quarterly (ZQ), gave a tour of some of the best resources available for designers and engineers of all stripes:

AskNature.org

Hooker walked us through AskNature.org, a web site with thousands of biomimicry strategies, set up by the Biomimicry Institute. The site organizes biological information by function. “Everything nature does fits into a function. And these functions enable us to connect biology to design.”

AskNature first organizes strategies into broad functions and then zooms down into the specific. For example, a user could click on the broad function group, “Get / Store / Distribute Resources,” and then navigate to “Capture, Absorb, and Filter,” and then select “Liquids,” which has 52 strategies. One such strategy describes how the nasal surfaces of camels help these desert animals retain water. Another looks at how the horny devil, a desert lizard, uses its grooves to gather water from the atmosphere. There are just as many plant-derived strategies as there are animal ones. One such strategy looks at how the arrangement of epiphytes’ leavesaids in water collection (see image above).

All of these strategies are written in a non-technical way for a general audience. Hooker said they have selected the most “salient examples, backed with credible research citations.” Users can then go explore the citations and pull out excerpts.

Tapping into Nature

Terrapin Bright Green, a sustainable design consultancy, produced Tapping into Nature, a comprehensive online report covering the world of biomimetic design, which includes an amazing interactive graph. Cas Smith, a biological engineer, explained that the report and graph seek to “uncover the landscape of biomimetic innovation, with a roadmap that shows designs and their their stage of development: concept, prototype, development, or in the marketplace.”

“Biomimetic design is now found in almost all industries — power generation, electronics, buildings.” But to make things easier, Terrapin organizes the design strategies into the following sections: water, materials, energy conservation and storage, optics & photonics, thermal regulation, fluid dynamics, data & computing, and systems.

Using the graph, Smith picked out one story: the firm Blue Planet, which is mimicking the bio-mineralization processes of coral reefs, which pull carbon dioxide out of the water to create their unique structures, to create a new type of carbon-based building material. The firm is also creating pigments and powders. Another highlight: early exploration of termite humidity damping devices. Termites create massive mounds, mostly underground, which are equal in scale to a skyscraper for us. Within the mound, temperature and humidity levels are tightly controlled so they can grow the fungi they live on. In some of the mound’s subterranean rooms and chambers are bright yellow objects about the size of a fist. These structures are termite-created sponges that actually pull water from the air. Smith related to this to HVAC systems in human buildings, and how new systems could be created to remove humidity with giant sponges in a more energy efficient way.

Smith said the process of creating biomimetic innovations is similar to that of a typical innovation development process. “There’s just the added layer up front.” While there are risks in any process, biomimetic designs, he argued, will be the source of “breakthrough products for solving our problems.” If the designers and engineers creating these new products and processes follow nature, “they can embed sustainability throughout.”

Read More

Sustainability in 7: Janine Benyus on Biomimicry via core77

This is seriously inspirational stuff for designers , found via the previous post by L.Hunter Lovins, I can’t resist spreading stuff like this to as wide a viewership as possible: Enjoy! via core77

DAS7_JanineBenyus.png

90-x-90.jpgThe Designers Accord Sustainability in 7 video series delivers a daily dose of design inspiration by today’s leading sustainability experts. Join in the conversation as they share 7 things every designer should consider when integrating sustainability into design practice.

Today we kick off the Designers Accord Sustainability in 7 series with Janine Benyus’ introduction to Biomimicry. How does a peacock feather inform new display screens? How do we use mother nature’s polymer architecture to think about new materials?

About Janine Benyus

Janine Benyus is a biologist, innovation consultant, and author of six books, including Biomimicry: Innovation Inspired by Nature. Benyus founded the Biomimicry Institute, a non-profit organization that promotes the study and imitation of nature’s efficient designs, to be used to create sustainable technologies. She is also a principal and co-founder of the Biomimicry Guild, an innovation consultancy that helps Fortune 500 companies create sustainable products, processes, and policies based on nature’s principles.

The Designers Accord is a global coalition of designers, educators, and business leaders working together to create positive environmental and social impact. Adopters of the Designers Accord commit to five guidelines that provide collective and individual ways to integrate sustainability into design. The Designers Accord provides a participatory platform with online and offline manifestations so that members have access to a community of peers who share methodologies, resources, and experiences around environmental and social issues in design